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1. Introduction

An infinitesimally thin brane is a geometrical construction which may reflect the charac-

teristic features of the solitonic objects found in string theory at the energy scales much

smaller than the energy scales related to the inverse thickness of the brane, or at distance

scales much bigger than the thickness of the brane. However, once we are going to use the

concept of brane phenomenologically and apply it to cosmology we have to be careful about

the interplay of different scales inherent in a cosmological model. For example, we have to

be sure about the smallness of the effect of thickness on the density or the cosmological

parameter before deciding to ignore it. This has never been shown explicitly.

Interest in walls and branes as solitonic localized matter distributions, specially in

higher dimensions, came from string theory mainly because it provides a novel approach

for resolving the cosmological constant and the hierarchy problems [1]. In this scenario,

gravitation is localized on a brane reproducing effectively four-dimensional gravity at large

distances due to the warp geometry of the spacetime [2]. However, the history of the

interest in the localized matter distributions in the context of gravity goes back to the early

beginning of general relativity. Recognizing the difficulty of handling thick walls within

relativity, already early authors considered the idealization of a singular hypersurface as

a thin wall and tried to formulate its dynamics within general relativity [3]. Einstein and

Strauss used implicitly the concept of a thick shell to an embedded spherical star within a

Friedmann-Robertson-Walker universe [4]. The new era of intense interests in thin shells

and walls began with the development of ideas related to phase transitions in early universe

and the formation of topological defects. Again, mainly because of technical difficulties,

strings and domain walls were assumed to be infinitesimally thin [5].

Thereafter, interest in thin walls, or hypersurfaces of discontinuity, received an impe-

tus from the cosmology of early universe. The formulation of dynamics of such singular
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hypersurfaces was summed up in the modern terminology by Israel [6]. Within the Sen-

Lanczos-Israel (SLI) formalism, thin shells are regarded as idealized zero thickness objects,

with a δ-function singularity in their energy-momentum and Einstein tensors.

In contrast to thin walls, thickness brings in new subtleties, depending on how the

thickness is defined and handled. Early attempts to formulate thickness, being mainly

motivated by the outcome of the idea of late phase transition in cosmology [7], were con-

centrated on domain walls. Silveria [8] studied the dynamics of a spherical thick domain

wall by appropriately defining an average radius < R >, and then used the well-known

plane wall scalar field solution as the first approximation to derive a formula relating

< R̈ >, < Ṙ >, and < R > as the equation of motion for the thick wall. Widrow [9] used

the Einstein-scalar equations for a static thick domain wall with planar symmetry. He then

took the zero-thickness limit of his solution and showed that the orthogonal components

of the energy-momentum tensor would vanish in that limit. Garfinkle and Gregory [10]

presented a modification of the Israel thin shell equations by using an expansion of the

coupled Einstein-scalar field equations describing the thick gravitating wall in powers of

the thickness of the domain wall around the well-known solution of the hyperbolic tangent

kink for a λφ4 wall and concluded that the effect of thickness at first approximation was

effectively to reduce the energy density of the wall compared to the thin case, leading to a

faster collapse of a spherical wall in vacuum. Others [11] applied the expansion in the wall

action and integrate it out perpendicular to the wall to show that the effective action for a

thick domain wall in vacuum apart, from the usual Nambu term, consists of a contribution

proportional to the induced Ricci curvature scalar.

Study of thick branes in the string inspired context of cosmology began almost simul-

taneously with the study of thin branes, using different approaches. Although in brane

cosmology the interest is in local behavior of gravity and the brane, most of the authors

take a planar brane for granted [12]. However, irrespective of the spacetime dimension

and the motivation of having a wall or brane, as far as the geometry of the problem is

concerned, most of the papers are based on a regular solution of Einstein equations on

a manifold with specified asymptotic behavior representing a localized scalar field [13].

Some authors use a smoothing or smearing mechanism to modify the Randall-Sundrum

ansatz [14, 15]. Authors in [15] introduce a thickness to the brane by smoothing out the

warp factor of a thin brane world to investigate the stability of a thick brane. In an-

other approach to derive generalized Friedmann equations, the four-dimensional effective

brane quantities are obtained by integrating the corresponding five-dimensional ones along

the extra-dimension over the brane thickness [16]. These cosmological equations describ-

ing a brane of finite thickness interpolate between the case of an infinitely thick brane

corresponding to the familiar Kaluza-Klein picture and the opposite limit of an infinitely

thin brane giving the unconventional Friedmann equation, where the energy density enters

quadratically. The latter case is then made compatible with the conventional cosmology

at late times by introducing and fine tuning a negative cosmological constant in the bulk

and an intrinsic positive tension in the brane [17]. Recently, Navarro and Santiago [18]

considered a thick codimension 1 brane including a matter pressure component along the

extra dimension in the energy-momentum of the brane. By integrating the 5D Einstein
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equations along the fifth dimension, while neglecting the parallel derivatives of the metric

in comparison with the transverse ones, they write the equations relating the values of the

first derivatives of the metric at the brane boundary with the integrated componentes of

the brane energy-momentum tensor. These, so called matching conditions are then used

to obtain the cosmological evolution of the brane which is of a non-standard type, leading

to an accelerating universe for special values of the model parameters.

A completely different approach based on the gluing of a thick wall considered as a

regular manifold to two different manifolds on both sides of it was first suggested in [19].

The idea behind this suggestion is to understand the dynamics of a localized matter dis-

tribution of any kind confined within two metrically different spacetimes or matter phases.

Such a matching of three different manifolds is envisaged to have many diverse applications

in astrophysics, early universe, and string cosmology. It enables one to have any topology

and any spacetime on each side of the thick wall or brane. The range of its applications is

from the dynamics of galaxy clusters and their halos to branes in any spacetime dimension

with any symmetry on each side of it [20]. By construction, such a matching is regular and

there is no singular surface whatsoever in this formulation. Therefore Darmois junction

conditions for the extrinsic curvature tensors on the thick wall boundaries with the two

embedding spacetimes can be applied.

In this paper, we will use this formalism recently developed in [21] for a finite thick

wall and apply it, as an example, to a thick brane embedded in a Schwarzschild Anti-

de Sitter (Sch-AdS) bulk to see the effect of thickness on the cosmology of the brane.

Although the dynamical equations can be written in an exact form, to compare them with

the standard cosmology we have to make an expansion in terms of the brane thickness.

It turns out that the modified Friedmann equation is similar to the standard one having

a linear term in density, in contrast to the thin brane cosmology, where the density term

enters quadratically .

In section 2 we introduce our formalism to examine the cosmological evolution of a

thick brane embedded in the bulk spacetime. section 3 is devoted to the metric of the

bulk and the brane and the related quantities needed to be substituted in the junction

conditions. In section 4 we give the modified Friedmann equations for the thick brane.

Our conclusions are presented in section 5.

Throughout the paper we use Λ for the five-dimensional cosmological constant and κ

for its gravitational constant. The two boundary limits of the thick brane are called Σj

with j = 1, 2. The core of the thick brane is denoted by Σ0. For any quantity S let S0

denote S|Σ0
. Square bracket [F ] indicates the jump of any quantity F across Σj. Latin

indices range over the intrinsic coordinates of Σj denoted by ξa
j , and Greek indices over

the coordinates of the 5-manifolds.

2. Modelling the thick brane

The technology of manipulating thin and thick localized matter distributions or walls in

general relativity in any dimension are basically different. Thin walls can be treated in two

different but equivalent ways. Either one solves the Einstein equations in d + 1 dimension
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with a distributional energy-momentum tensor which mimics an infinitesimally thin wall

carrying some kind of matter, dark or not dark, including radiation, or one takes the

known solutions of Einstein equations on either side of the wall and glues them to the

wall by applying the boundary conditions at the wall location. The equivalence of these

two procedures is not trivial but has been shown rigorously for the general case in [22].

Boundary surfaces not carrying any energy-momentum tensor can just be considered as a

special case. It should be noted that such an equivalence does not exist for codimension 2

walls or defects, as it is also the case for the strings in 4-dimensional spacetime.

The lack of such an equivalence in the case of thick walls or localized matter distribu-

tions makes us differentiate between different applications of the term of thick wall or brane.

Usually a thick wall is considered to be a solution of Einstein equations with a localized

scalar field having a well-defined asymptotic behavior. As mentioned in the introduction,

we will continue to use the term of thick wall for such a solution of Einstein equations.

However, there is another case of interest with advantages in diverse applications in astro-

physics and string cosmology. Assume a localized matter distribution to be considered as a

solution of Einstein equations on a specific manifold with well-defined timelike boundaries.

This localized or thick wall is then immersed in a universe which could in principle consist

of two different solutions of Einstein equations on each side of the wall. The combined

manifold, consisting of three different solutions of Einstein equations is again a solution

of Einstein equations. The localized wall may be infinite in the planar or cylindrical case

or compact in the spherical case. Therefore, in contrast to the thin wall formalism where

one glues two different manifolds along a singular hypersurface, our definition of localized

or thick wall leads to the problem of gluing three different manifolds along two regular

hypersurfaces.

Let us now consider a thick codimension 1 brane immersed in a 5-dimensional bulk

spacetime. Following the formalism introduced in [21], we take the thick wall with two

boundaries Σ1 and Σ2 dividing the overall spacetime M into three regions. Two regions

M+ and M− on either side of the wall and the region M0 within the wall itself. Treating

the two surface boundaries Σ1 and Σ2 separating the manifold M0 from two distinct

manifolds M+ and M−, respectively, as nonsingular timelike hypersurfaces, we expect the

intrinsic metric hab and extrinsic curvature tensor Kab of Σj to be continuous across the

corresponding hypersurfaces . These requirements, the so-called Darmois conditions, are

formulated as

[hab]Σj
= 0 j = 1, 2, (2.1)

[Kab]Σj
= 0 j = 1, 2, (2.2)

where the square bracket denotes the jump of any quantity that is discontinuous across

Σj . To impose the Darmois conditions on two surface boundaries of a given thick wall one

needs to know the metric in three distinct spacetimes M+, M− and M0 being jointed at

Σj . While the metrics in M+ and M− are usually given in advance, knowing the metric

within the wall spacetime M0 requires a nontrivial work.

We assume the wall to have a proper thickness 2w in the fifth dimension. We therefore

have three different regions, two in the bulk and one within the brane, to be joined together
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as three different manifolds. Each boundary of the thick brane (Σj , j = 1, 2) glues the

inside metric to a version of the outside spacetime. From the two junction conditions for

each of the boundaries, to glue a slicing of the bulk to the spacetime within the brane, we

obtain:

Kab

∣

∣

∣

+

Σ2

−Kab

∣

∣

∣

−

Σ1

+Kab

∣

∣

∣

w

Σ1

−Kab

∣

∣

∣

w

Σ2

= 0, (2.3)

where +,− denote two slices of the outside spacetime and w denotes the spacetime within

the wall.

Now, we introduce a Gaussian normal coordinate system (n, ξa
0 ) in the neighborhood of

the core of the thick brane denoted by Σ0, where ξa
0 are the intrinsic coordinates of Σ0, and

n is the proper length along the geodesics orthogonal to Σ0 such that n = 0 corresponds

to Σ0. Assuming that the brane thickness is small in comparison with its curvature radius,

we then expand the extrinsic curvature tensor terms in the equation (2.3) in a Taylor series

around Σ0 situated at n = 0

Kab

∣

∣

∣

Σj

= Kab

∣

∣

∣

Σ0

+εjw
∂Kab

∂n

∣

∣

∣

Σ0

+O(w2), (2.4)

where ε1 = −1 and ε2 = +1. The derivative of the extrinsic curvature of the brane is

related to the 5D geometric quantities as follows:

∂Kab

∂n
= KadK

d
b − Rµανσnαnσeµ

aeν
b , (2.5)

with nµ being the normal vector field to the brane, Rµανσ the five-dimensional Riemann

curvature tensor and e
µ
a = ∂xµ

∂ξa
0

are the four basis vectors tangent to the brane. Substitut-

ing (2.5) and (2.4) into (2.3) we arrive at the following equation being written on the core

of the thick brane

Kab

∣

∣

∣

+

Σ0

−Kab

∣

∣

∣

−

Σ0

+ w

(

(KacK
c
b − Rµσνλeµ

aeν
bn

σnλ)
∣

∣

∣

−

Σ0

+(KacK
c
b − Rµσνλeµ

aeν
bn

σnλ)
∣

∣

∣

+

Σ0

− 2(KacK
c
b − Rµσνλeµ

aeν
bn

σnλ)
∣

∣

∣

w

Σ0

)

= 0. (2.6)

Having specified the metric of the bulk and the metric within the wall, all terms in the

equation (2.6) are known and, therefore, the dynamics of the thick brane is given. In the

limit (w → 0) we should also reproduce the familiar thin wall equations.

3. Explicit calculations on the core

Armed with eq. (2.6) we now proceed to study the dynamics of a thick brane of constant

spacial curvature embedded in a five-dimensional negative bulk cosmological constant. Ac-

cording to the generalized Birkhoff’s theorem the five-dimensional vacuum cosmologically

symmetric solution of Einstein’s equations is necessarily static and corresponds to Sch-AdS

metric given by

ds2 = −f(r)dT 2 +
dr2

f(r)
+ r2dΩ2

k, (3.1)
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with

f(r) = k − Λ

6
r2 − C

r2
, (3.2)

where dΩ2
k is the metric of the 3D hypersurfaces Σ of constant curvature that is parame-

terized by k = 0,±1; Λ is the bulk cosmological constant, and constant C is identified with

the mass of a black hole located at r = 0. Since we need to know the spacetime of the thick

brane itself we here take the following ansatz for the metric of the brane being written in a

Gaussian normal coordinate system in the vicinity of the core of the thick brane situated

at y = 0

ds2 = −n2(t, y)dt2 + dy2 + a2(t, y)dΩ2
k, (3.3)

where n2(t, y) and a2(t, y) are some unknown functions to be determined by solving the

Einstein equations within the brane with a suitable energy-momentum tensor, and y is the

normal coordinate of the extra dimension. Compatibility with the cosmological symmetries

requires that the energy-momentum tensor of the matter content in the brane takes the

simple form

T µ
ν = (−ρ, PL, PL, PL, PT ), (3.4)

where the energy density ρ, the longitudinal pressure PL, and the transverse pressure PT

are functions of t and y.

Reading the metric (3.3) as ds2 = dy2 +γab(x
c, y)dxadxb, we now expand it in a Taylor

series in the vicinity of the core Σ0 of the thick brane placed at y = 0 as follows:

γab(x
c, y) = γab(x

c, 0) + y
∂γab(x

c, y)

∂y

∣

∣

∣

y=0
+

y2

2

∂2γab(x
c, y)

∂y2

∣

∣

∣

y=0
+O(y3), (3.5)

where γab(x
c, 0) is the metric on Σ0, with xc = (τ, χ, θ, ϕ) the intrinsic coordinates of Σ0.

But the derivatives in the expansion (3.5) are given by

∂γab(x
σ, y)

∂y
= 2Kab, (3.6)

∂2γab(x
σ, y)

∂y2
= 2KadK

d
b − 2Rµανσnαnσeµ

aeν
b . (3.7)

Let us write it more explicitly

− n2(t, y) = −n2(t, 0) + 2yKττ

∣

∣

∣

y=0
+y2(Kτ

τ Kττ − Rtyty)
∣

∣

∣

y=0
, (3.8)

a2(t, y) = a2(t, 0) + 2yKχχ

∣

∣

∣

y=0
+y2(Kχ

χKχχ − Rχyχy)
∣

∣

∣

y=0
. (3.9)

Defining a0(τ) = a(t(τ), 0) and using the expansions (3.8) and (3.9), we now write down

the non-trivial components of the full 5D Einstein’s equations Gµν = κ2Tµν at the location

of the core of the brane placed at y = 0, with the metric (3.3) and the energy-momentum

tensor (3.4) as follows (see the appendix for the corresponding components of the Einstein

tensor)

ty : −H0Kττ +
H0

a2
0

Kχχ − 1

a2
0

K̇χχ = 0, (3.10)
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yy :
K2

χχ

a4
0

− KχχKττ

a2
0

− H2
0 − ä0

a0
− k

a2
0

=
κ2

3
P 0

T , (3.11)

tt : H2
0 − 1

a2
0

(B − k) =
κ2

3
ρ0, (3.12)

χχ :
2ä0

a0
+

2KττKχχ

a2
0

+
K2

χχ

a4
0

+ K2
ττ − B

a2
0

+ A = −κ2

3
(ρ0 + 3P 0

L), (3.13)

where the dot stands for the derivative with respect to the proper time τ , H0 = ȧ0

a0
,

ρ0 = ρ(t, y = 0), P 0
L = PL(t, y = 0), and P 0

T = PT (t, y = 0). For the sake of brevity, we

have defined A = KττK
τ
τ −Rtyty

∣

∣

∣

Σ0

, B = K
χ
χKχχ−Rχyχy

∣

∣

∣

Σ0

, and without loss of generality

n(t, 0) = 1.

Solving the ty and yy components of the Einstein equations for Kχχ and Kττ , and

performing the time integration we obtain

Kχχ

∣

∣

∣

w

Σ0

= a0

√

ȧ2
0 +

2κ2

3

P̃T

a2
0

+ k +
E

a2
0

, (3.14)

Kττ

∣

∣

∣

w

Σ0

=

2κ2

3
P̃T

a4

0

− κ2

3 P 0
T − ä0

a0
+ E

a4

0
√

H2
0 + 2κ2

3
P̃T

a4

0

+ k
a2

0

+ E
a4

0

, (3.15)

where E > 0 is an integration constant, and

P̃T ≡
∫ τ

0
P 0

T a4
0 H0dτ. (3.16)

From tt component of the Einstein equations one can quickly read

B = (Kχ
χKχχ − Rχyχy)

∣

∣

∣

w

Σ0

= H2
0a2

0 + k − κ2

3
ρa2

0. (3.17)

Furthermore, substituting the expressions (3.14) and (3.15) into χχ component of the

Einstein equations yields the following expression for A

A = Kτ
τ Kττ − Rtyty

∣

∣

∣

w

Σ0

= −K2
ττ

∣

∣

∣

w

Σ0

−2κ2

3

(

ρ0 +
3

2
P 0

L − P 0
T +

3

a4
0

P̃T

)

− 3E

a4
0

. (3.18)

Returning now to the Sch-AdS bulk spacetime (3.1), we note that the corresponding four

velocity uµ and the normal vector nµ being evaluated on the thick brane’s core Σ0 are,

respectively

uµ
∣

∣

∣

±

Σ0

= (Ṫ , ȧ, 0, 0, 0)
∣

∣

∣

Σ0

, nµ
∣

∣

∣

±

Σ0

= ε±

(

f−1ȧ, f Ṫ , 0, 0, 0
) ∣

∣

∣

Σ0

, (3.19)

where the sign function ε = ±1 takes care of the different patches of the Sch-AdS spacetime

which might be glued to the brane, and Ṫ |Σ0
=

√
f0+ȧ2

0

f0
. Subsequently, the relevant com-

ponents of the extrinsic curvature tensor on Σ0 computed from the Sch-AdS metric (3.1)

are

Kχχ

∣

∣

∣

±

Σ0

= ε±a0

√

f0 + ȧ2
0, (3.20)

– 7 –
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Kττ

∣

∣

∣

±

Σ0

= − ε±
√

f0 + ȧ2
0

(

ä0 −
Λ

6
a0 +

C

a3
0

)

, (3.21)

where f0 = f(r = a0(τ)). The assumption of the Z2 symmetry, with y = 0 as a fixed

point, leads to Kab

∣

∣

∣

+

Σ0

= −Kab

∣

∣

∣

−

Σ0

, implying that for matching of two interior patches of the

Sch-AdS spacetime one has to choose ε+ = −1 and ε− = +1. This choice of the patches

of the Sch-AdS metric is necessary to have the Z2 symmetry which makes the problem

simpler.

Moreover, from the metric (3.1), the nonzero components of the Riemanian curvature

tensor on Σ0 are calculated to be

Rχrχr

∣

∣

∣

w

Σ0

=
1

f0

(

Λa2
0

6
− C

a2
0

)

, RχTχT

∣

∣

∣

w

Σ0

= f0

(−Λa2
0

6
+

C

a2
0

)

, RTrTr

∣

∣

∣

w

Σ0

=
Λ

6
− 3C

a4
0

.(3.22)

We are now ready to write down explicitly the dynamical equations of the brane using the

master equation (2.6).

4. Generalized Friedmann equations

Substituting eqs. (3.17), (3.19), (3.20), and (3.22) into the χχ component of the equa-

tion (2.6) we obtain
√

f0 + ȧ2
0 =

w

a0

(

−Λ

3
a2

0 +
κ2

3
ρ0a

2
0

)

. (4.1)

Taking the square of eq. (4.1), substituting the expression (3.2) and rearranging, we arrive

at the following equation

H2
0 +

k

a2
0

=
2κ2w2(−Λ)

9
ρ0 +

κ4w2

9
ρ2
0 +

(

Λ

6
+

w2Λ2

9

)

+
C

a4
0

. (4.2)

Assuming the brane energy density profile as a Taylor series around y = 0

ρ(t, y) = ρ0 + y
∂ρ

∂y

∣

∣

∣

y=0
+

1

2
y2 ∂2ρ

∂y2

∣

∣

∣

y=0
+O(y3), (4.3)

we conveniently define an effective four-dimensional energy density % associated to the

five-dimensional energy density ρ as

% =

∫ w

−w

ρdy ' 2wρ0 + O(w2). (4.4)

We then identify
Λ4

3
=

Λ

6
+

w2Λ2

9
, (4.5)

8πG =
κ2w(−Λ)

3
. (4.6)

Putting all this together, eq. (4.2) turns into the following form

H2
0 +

k

a2
0

=
8πG

3
% +

κ4

36
%2 +

Λ4

3
+

C

a4
0

. (4.7)
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This equation is our main result. As we see, there is a linear in addition to a quadratic

term in the matter density, due to the non-vanishing of the thickness w, which is a novel

effect. There is no need of introducing an ad hoc tension for the brane, and splitting it from

the matter density on the brane. According to this equation the cosmological expansion

undergoes a transition from a high energy regime κ2% À w(−Λ), where the dominated %2

term yields the unconventional cosmological expansion, into a low energy regime κ2% ¿
w(−Λ) where the brane observers recover the standard cosmology described by the usual

Friedmann equation. The compatibility with the Big Bang Nucleosynthesis (BBN) puts an

essential constraint on the parameters of the model, so that to preserve the predictions of

standard cosmology, the high energy regime, where the %2 term is significant, must occur

before BBN era. From eqs. (4.6) and (4.7) this implies that κ−2w|Λ| ≥ (1MeV )4, yielding

the constraint M ≥ 104 GeV , for the fundamental mass scale defined by κ2 = M−3, the

same result as obtained in the thin brane case.

Taking the thickness of the brane equal to the curvature size of the AdS defined as

Λ = −6
l2

, we obtain from (4.5) exactly Λ4 = 0 that can be considered a fine-tunning. This

means that the effective 4-dimensional cosmological constant induced on the brane vanishes

up to the third order in the thickness. A residual term proportional to the third order may

still remain. This may be a hint to the solution of the cosmological constant problem!

The effective brane cosmological constant has an interesting behavior too. According

to (4.5), it is up-lifted relative to its value in the AdS bulk. This effect is similar to the

KKLT up-lifting of the AdS minimum by inclusion of D3 branes in the warped geometry

put forward in [23], derived from purely geometrical considerations. If there is any deep

connection to the KKLT uplifting effect remains to be seen.

Assuming again 2w = l, from (4.6), the 4-dimensional gravitational constant then

becomes 8πG = κ2

l
. This is exactly the value derived by the dimensional compactification

of the fifth dimension. Another consequence worth mentioning is the proportionality of the

four-dimensional Newton’s constant given by (4.6) to the brane thickness. Assuming a time

dependent brane thickness, this induces a time evolution for the Newton’s constant. On

the cosmological scale this is experimentally constrained [24], imposing tight restrictions

on the time dependence of the brane thickness.

The thin brane limit of our thick brane is also easily derived. In this limit the eq. (4.7)

reduces to the unconventional Friedmann equation of thin brane cosmology [17]

H2
0 +

k

a2
0

=
κ4

36
%2 +

Λ

6
+

C

a4
0

, (4.8)

We may also look at the acceleration equation and its thin brane limit. Take the ex-

pressions (3.18), (3.19), (3.21), and (3.22) to write down the ττ component of eq. (2.6)

explicitly. We then end up with the following equation:

ä0

a0
− Λ

6 + C
a4

0
√

f0 + ȧ2
0

=
−w

a0

(

2κ2

3

(

ρ0 +
3

2
P 0

L − P 0
T +

3

a4
0

P̃T

)

+
Λ

6
+

3E

a4
0

+
3C

a4
0

)

, (4.9)

in deriving (4.9), we see from eqs. (2.2) and (2.4) that Kττ

∣

∣

∣

+

Σ0

−Kττ

∣

∣

∣

w

Σ0

= O(w), and can

therefore be neglected.

– 9 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
9

Now, defining the four-dimensional effective quantities associated to the five-dimen-

sional longitudinal and transverse pressures PL and PT in the form

pL =

∫ +w

−w

PL dy ' 2wP 0
L + O(w2), (4.10)

pT =

∫ +w

−w

PT dy ' 2wP 0
T + O(w2), (4.11)

we realize that in the zero thickness limit (w → 0), eq. (4.9) reduces to the Raychaudhuri

equation for a thin brane [25]:

ä0

a0
+

ȧ2
0

a2
0

+
k

a2
0

= −κ4

36
%(% + 3pL) +

Λ

3
, (4.12)

where we have used the thin brane equation (4.8) and the fact that the profile for the

transverse pressure PT will not blow up in the thin brane limit. Therefore, we get the

familiar thin brane limit from our thick brane model, as would be expected.

Note now that the time component of the covariant derivative of the brane energy-

momentum tensor (3.4), using the metric (3.3), leads to the familiar energy conservation

condition on the core of the thick brane:

ρ̇0 + 3H0(ρ0 + P 0
L) = 0. (4.13)

Let us assume the arbitrary effective equations of state of the form

pL = ωL%, pT = ωT %, (4.14)

with constants ωL and ωT . The conservation equation (4.13) can then be integrated with

the result as usual

ρ0 = ρia
−3(1+ωL)
0 , (4.15)

where ρi is a constant. Then P̃T , according to the definition (3.16), can be computed as

P̃T =
ρiωT

1 − 3ωL
a1−3ωL

0 . (4.16)

Of great cosmological interest is the possibility of a late time accelerated expansion

on the brane. To investigate this possibility, we take a closer look at the generalized

acceleration equation (4.9). Inserting eqs. (4.14), (4.15), and (4.16), eq. (4.9) can be recast

as

ä0

a0
= −

√

f0 + ȧ2
0

a0

κ2%

3

(

1 +
3ωL

2
− ωT +

3ωT

1 − 3ωL

)

+
1

6

(

Λ4 +
Λ

2

)

+
κ2%w

6

(−Λ

6

)

− 3w
√

f0 + ȧ2
0

a0

(

E

a4
0

+
C

a4
0

)

− C

a4
0

, (4.17)

where we have used eqs. (4.1) and (4.5). Note that at low energies, i.e. at late times, the

two last terms on the right hand side of eq. (4.17) redshift quickly and one can then neglect

– 10 –
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them. Hence, this equation tells us that for the acceleration term on the left hand side of

eq. (4.17) to be positive one or both of the following conditions must be satisfied

1 +
3ωL

2
− ωT +

3ωT

1 − 3ωL
< 0. (4.18)

Λ4 >
−Λ

2
(4.19)

In particular, in the case of ωL = 0 for dust matter, the constraint (4.18) immediately

reduces to ωT < −1
2 . Consequently, we see that an accelerated cosmological expansion

on the core of the thick brane is possible if one includes the matter having a negative

pressure along the extra dimension in the brane energy-momentum tensor, or if the effec-

tive 4-dimensional cosmological constant is positive, according to the condition (4.19) (see

also [18]).

5. Conclusion

We have obtained a general equation (2.6) to study the dynamics of codimension one

brane of finite thickness immersed in an arbitrary bulk spacetime. This was obtained in

a general setting by imposing the Darmois junction conditions on the brane boundaries

with the two embedding spacetimes and then using an expansion scheme for the extrinsic

curvature tensor at the brane boundaries in terms of the proper thickness of the brane. Our

formalism is valid for any brane whose thickness is small compared to its curvature radius.

Using this approach we gave the generalized Friedmann equations written for expansion

of the extrinsic curvatures up to the first order of the brane proper thickness governing

the cosmological evolution of the core of a thick brane embedded in a five-dimensional

Schwarzschild Anti-de Sitter spacetime with a Z2 symmetry. The derived equations for the

thick brane have the well-known limit of the thin brane equations.

There are some novel effects for this finite thick brane cosmology. First, the generelized

Friedmann equation shows a linear in addition to a quadratic term in the density. Therefore,

the late time behavior is the same as the standard cosmology without introducing an ad hoc

brane tension into the energy-momentum tensor of the brane. Second, the effective induced

4-dimensional cosmological constant of the brane is increased similar to the KKLT uplifting

of the AdS minimum. It turns out that this 4-dimensional cosmological constant vanishes

for a thickness equal to the AdS curvature size, up to the third power of the thickness.

The 4-dimensional Newton’s gravitational constant is then equal to the 5-dimensional one

divided by the AdS length, which is similar to the result derived through the dimensional

compactification. According to the equation (4.17), the universe filled with dust matter,

will be accelerating at late times, if the pressure along the extra dimension in the brane

energy-momentum tensor is negative, or if the effective cosmological constant satisfies the

condition (4.19) .
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A. Five-dimensional Einstien tensor

The non-trivial components of the five-dimensional Einstein tensor Gµν for the metric (3.3)

are computed as

G00 = 3
ȧ2

a
− 3n2

(

a′′

a
+

a′
2

a2

)

+ 3k
n2

a2
, (A.1)

Gij = a2γij

(

2
a′′

a
+

n′′

n
+

a′
2

a2
+ 2

a′n′

n

)

+
a2

n2
γij

(

−2
ä

a
− ȧ2

a2
+ 2

ȧṅ

an

)

− kγij , (A.2)

G0y = 3

(

n′

n

ȧ

a
− ȧ′

a

)

, (A.3)

Gyy = 3

(

a′
2

a2
+

a′n′

an

)

− 3

n2

(

ä

a
+

ȧ2

a2
− ȧ

a

ṅ

n

)

− 3
k

a2
, (A.4)

where a dot stands for a derivative with respect to t and a prime a derivative with respect

to y.
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